
FinRL-Meta: Market Environments and Benchmarks
for Data-Driven Financial Reinforcement Learning

Xiao-Yang Liu1⇤, Ziyi Xia1⇤, Jingyang Rui2, Jiechao Gao3, Hongyang Yang1,
Ming Zhu4, Christina Dan Wang5†, Zhaoran Wang6, Jian Guo7†

1Columbia University; 2The University of Hongkong; 3University of Virginia;
4SIAT CAS; 5New York University (Shanghai); 6Northwestern University;

7IDEA Research, International Digital Economy Academy
{xl2427, zx2325, hy2500}@columbia.edu, christina.wang@nyu.edu,

zhaoranwang@northwestern.edu, guojian@idea.edu.cn

Abstract

Finance is a particularly difficult playground for deep reinforcement learning.
However, establishing high-quality market environments and benchmarks for fi-
nancial reinforcement learning is challenging due to three major factors, namely,
low signal-to-noise ratio of financial data, survivorship bias of historical data,
and model overfitting in the backtesting stage. In this paper, we present an
openly accessible FinRL-Meta library that has been actively maintained by the
AI4Finance community. First, following a DataOps paradigm, we will provide
hundreds of market environments through an automatic pipeline that collects
dynamic datasets from real-world markets and processes them into gym-style
market environments. Second, we reproduce popular papers as stepping stones
for users to design new trading strategies. We also deploy the library on cloud
platforms so that users can visualize their own results and assess the relative
performance via community-wise competitions. Third, FinRL-Meta provides
tens of Jupyter/Python demos organized into a curriculum and a documentation
website to serve the rapidly growing community. FinRL-Meta is available at:
https://github.com/AI4Finance-Foundation/FinRL-Meta

1 Introduction

Finance is a particularly challenging playground for deep reinforcement learning (DRL) [59, 23],
including investigating market fragility [50], developing profitable strategies [37, 67, 68], and as-
sessing portfolio risk [42, 7]. However, establishing near-real market environments and benchmarks
on financial reinforcement learning are challenging due to three major factors, namely, low signal-
to-noise ratio (SNR) of financial data, survivorship bias of historical data, and model overfitting in
the backtesting stage. Such a simulation-to-reality gap [14, 15] degrades the performance of DRL
strategies in real markets. Therefore, high-quality market environments and DRL benchmarks are
crucial for the research and industrialization of data-driven financial reinforcement learning.

Existing works have applied various DRL algorithms in financial applications [42, 39, 27, 48]. Many
of them have shown better trading performance in terms of cumulative return and Sharpe ratio. Several
recent works [42, 3, 27] showed the great potential of DRL-based market simulators that are not
publicly available yet. Therefore, these works are difficult to reproduce. The FinRL library [38, 39]
provided an open-source framework for financial reinforcement learning. However, it focused on

⇤Equal contribution.
†Corresponding authors.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/AI4Finance-Foundation/FinRL-Meta


Figure 1: DataOps paradigm (left) and data-driven financial reinforcement learning (right).

guaranteeing reproducibility of backtesting performance while several market environments were
provided. A workshop version of FinRL-Meta [36] provided data processors to access and clean
unstructured market data, but it did not provide benchmarks back then.

The DataOps paradigm [63, 6, 16] refers to a set of practices, processes, and technologies that
combines automated data engineering and agile development [16]. It helps reduce the cycle time of
data engineering and improve data quality. To deal with financial big data (usually unstructured), we
follow the DataOps paradigm and implement an automatic pipeline in Fig. 1(left): task planning,
data processing, training-testing-trading, and monitoring agents’ performance. Through this pipeline,
we continuously produce DRL benchmarks on dynamic market datasets.

In this paper, we present an openly accessible FinRL-Meta library that has been actively maintained
by the AI4Finance community. We aim to create an infrastructure to enable near real-time paper
trading and facilitate the real-world adoption of financial reinforcement learning. This is relevant to
the broader RL research community since it provides a rare case of a task that can be tested against
real-world performance without major investment, while robotics requires simulation or expensive
equipment and games are available in simulations.

Fig. 1(right) shows an overview of data-driven financial reinforcement learning. First, following a
DataOps paradigm [63, 6, 16], we provide hundreds of market environments through an automatic
pipeline that collects dynamic datasets from real-world markets and processes them into standard
gym-style market environments. Second, we reproduce popular papers as benchmarks, including high-
frequency stock trading, cryptocurrency trading and stock portfolio allocation, serving as stepping
stones for users to design new strategies. With the help of the data engineering pipeline, we hold our
benchmarks on cloud platforms so that users can visualize their own results and assess the relative
performance via community-wise competitions. Third, FinRL-Meta provides tens of Jupyter/Python
demos as educational materials, organized in a curriculum, and a documentation website to serve the
rapidly growing community.

The remainder of this paper is organized as follows. Section 2 reviews existing works. Section 3
describes challenges and presents an overview of our FinRL-Meta framework. Section 4 describes
how we process data into market environments. In Section 5, we benchmark popular DRL papers.
Finally, we conclude this paper in Section 6.

2 Related Works

We review DataOps practices and existing works on data-driven reinforcement learning.

DataOps practices: DataOps [16, 6, 63] applies the ideas of lean development and DevOps to
the data analytics field. DataOps practices have been developed in companies and organizations to
improve the quality and efficiency of data analytics [6]. These implementations consolidate various
data sources, unify and automate the pipeline of data analytics, including data accessing, cleaning,
analysis, and visualization.

However, the DataOps methodology has not been applied to financial reinforcement learning re-
searches. Most researchers access data, clean data, and extract technical indicators (features) in a
case-by-case manner, which involves heavy manual work and may not guarantee the data quality.

Data-driven reinforcement learning: Environments are crucial for training DRL agents [59].

2



Table 1: List of state space, action space, and reward function.

Key components Attributes

State

Balance bt 2 R+; Shares ht 2 Zn
+

Opening/high/low/close prices ot,ht, lt,pt 2 Rn
+

Trading volume vt 2 Rn
+

Fundamental indicators; Technical indicators
Social data; Sentiment data
Smart beta indexes, etc.

Action Buy/Sell/Hold
Short/Long
Portfolio weights

Reward
Change of portfolio value
Portfolio log-return
Sharpe ratio

Environments
Dow-30, S&P-500, NASDAQ-100
Cryptocurrencies
Foreign currency and exchange
Futures; Options; ETFs; Forex
CN securities; US securities; NMS US securities
Paper trading; Living trading

• OpenAI gym [8] provides standardized environments for a collection of benchmark problems
that expose a common interface, which is widely supported by many libraries [51, 31, 34]. Three
trading environments, TradingEnv, ForexEnv, and StocksEnv, are included to support Stock and
FOREX markets. However, it has not been updated for years.

• D4RL [18] introduces the idea of Datasets for deep data-driven reinforcement learning (D4RL). It
provides benchmarks in offline RL. However, D4RL does not provide financial environments.

• FinRL [38, 39] is an open-source library that builds a full pipeline for financial reinforcement
learning. It contains three market environments, i.e., stock trading, portfolio allocation, crypto
trading, and two data sources, i.e., Yahoo Finance and WRDS. However, those market environments
of FinRL cannot meet the community’s growing demands.

• NeoRL [49] collected offline RL environments for four areas, CityLearn [64], FinRL [38, 39],
Industrial Benchmark [24], and MuJoCo [61], where each area contains several gym-style environ-
ments. Regarding financial aspects, it directly borrows market environments from FinRL.

Benchmarks of financial reinforcement learning: Many researches applied DRL algorithms in
quantitative finance [37, 67, 68, 5, 3, 12] by building their own market environments. Despite
the above-mentioned open-source libraries that provide some useful environments, there are no
established benchmarks yet. On the other hand, the data accessing, cleaning and factor extraction
processes are usually limited to data sources like Yahoo Finance and Wharton Research Data Services
(WRDS).

3 Financial Reinforcement Learning and FinRL-Meta Framework

We describe financial reinforcement learning and its challenges, then provide an overview of our
FinRL-Meta framework.

3.1 Financial Reinforcement Learning and Challenges

Assuming full observability, we model a trading task as a Markov Decision Process (MDP) with
five tuples [59] (S,A,P, r, �), where S and A denote the state space and action space, respectively,
P(s0|s, a) is the transition probability of an unknown environment, r(s, a, s0) is a reward function,
and � 2 (0, 1] is a discount factor. A trading agent learns a policy ⇡(st|at) that maximizes the
discounted cumulative return R =

PT
t=0 �

tr(st, at, st+1) over a trading period t = 0, 1, ..., T .

3



Figure 2: Overview of FinRL-Meta framework.

The historical dataset before time 0 is used to train the trading agent. Note that we process the dataset
into a market environment, following the de facto standard of OpenAI gym [8]. In Table 1, we list
the state space, action space, and reward function.

• State s 2 S: A state represents an agent’s perception of a market environment, which may include
balance, shares, OHLCV values, technical indicators, social data, sentiment data, etc.

• Action a 2 A: An action is taken from the allowed action set at a state. Actions may vary for
different trading tasks, e.g., for stock trading, the actions are the number of shares to buy/sell for
each stock, while for portfolio allocation, the actions are the allocation weights of the capital.

• Reward r(s, a, s0): Reward is an incentive mechanism for an agent to learn a better policy. Several
common reward functions are provided: 1). Change of portfolio value r(s, a, s0) = v0 � v, where
v0 and v are portfolio values at state s0 and s, respectively; 2). Portfolio log return r(s, a, s0) =
log(v0/v); and 3). Sharpe ratio [55] defined in Section 5.1.

The above full observability assumption can be extended to partial observation (the underlying
states cannot be directly observed), i.e., partially observable Markov Decision Process (POMDP). A
POMDP model utilizes a Hidden Markov Model (HMM) [45] to model a time series that is caused
by a sequence of unobservable states. Considering the noisy financial data, it is natural to assume
that a trading agent cannot directly observe market states. Studies suggested that the POMDP model
can be solved by using recurrent neural networks, e.g., an off-policy Recurrent Deterministic Policy
Gradient (RDPG) algorithm [41], and a long short-term memory (LSTM) network that encodes
partial observations into a state of a reinforcement learning algorithm [52].

Training and testing environments based on historical data may not simulate real markets accurately
due to the simulation-to-reality gap [14, 15], and thus a trained agent cannot be directly deployed in
real-world markets. We summarize three major factors for the simulation-to-reality gap in financial
reinforcement learning as follows:

• Low signal-to-noise ratio (SNR) of financial data: Data from different sources may contain large
noise [66] such as random noise, outliers, etc. It is challenging to identify alpha signals or build
smart beta indexes using noisy datasets.

• Survivorship bias of historical market data: Survivorship bias is caused by a tendency to
focusing on existing stocks and funds without consideration of those that are delisted [9]. It could
lead to an overestimation of stocks and funds, which will mislead the agent.

• Model overfitting in backtesting stage: Existing research mainly report backtesting results. It is
possible to tune hyper-parameters and retrain the agent multiple times 3 to obtain better backtesting
results, causing model overfitting [20, 13].

4



���������	
�	����	


�

�

�

�

�

�����
������	


�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���������	�	


�

�

�

�������

	
��

�����


�������


�

�

�

�

�

�

�

�

�

�

��
����������
 
��������������������������

������������������������������� ������������

�������������

�

�

�

�

�

�

�

�

�

�

!�����������

"���

#�������

$���


$�������


����

%	
�

#������

$�������

$������������

&�����

�����

�����

'�(��
������

������)�������

���

������*�������
$��������


����������

�����������

!�����

+��
���

,����!����

����!����

	��(���

&��(���

��-	


���(��

	�����

&��(��.������/%-�����

%0��1����������

����

�������



���������

�������������

%��(���������

�������
��
��

�������
���

-������

0����%��(�����

�����

1������������������


���������������2�&�����2�

3����������2������

0���*1��(*3�4*�����*

.�����


�����������
�������

������������2�

%�52�5������	������
��4�����������

�������
������� &���
�����
������� &�������� ��
�������

Figure 3: Data layer of FinRL-Meta.

3.2 Overview of FinRL-Meta

FinRL-Meta builds a universe of market environments for data-driven financial reinforcement learning.
FinRL-Meta follows the de facto standard of OpenAI Gym [8] and the lean principle of software
development. It has the following unique features.

Layer structure and extensibility: As shown in Fig. 2, we adopt a layered structure that consists
of three layers, data layer, environment layer, and agent layer. Layers interact through end-to-end
interfaces, achieving high extensibility. For updates and substitutes inside a layer, this structure
minimizes the impact on the whole system. Moreover, the layer structure allows easy extension of
user-defined functions and fast updating of algorithms with high performance.

Training-testing-trading pipeline: We employ a training-testing-trading pipeline that the DRL
approach follows a standard end-to-end pipeline. The DRL agent is first trained in a training
environment and then fined-tuned (adjusting hyperparameters) in a validation environment. Then the
validated agent is tested on historical datasets (backtesting). Finally, the tested agent will be deployed
in paper trading or live trading markets.

Plug-and-play mode: In the above training-testing-trading pipeline, a DRL agent can be directly
plugged in, then trained and tested. The following DRL libraries are supported:

• ElegantRL [34]: Lightweight, efficient and stable algorithms using PyTorch.

• Stable-Baselines3 [51]: Improved DRL algorithms based on OpenAI Baselines.

• RLlib [31]: An open-source DRL library that offers high scalability and unified APIs.

4 Financial Big Data and DataOps for Dynamic Datasets

Financial big data is usually unstructured in shape and form. We process four types of data [13] into
market environments, including fundamental data (e.g., earning reports), market data (e.g., OHLCV
data), analytics (e.g., news sentiment), and alternative data (e.g., social media data, ESG data).

3There is information leakage.

5



4.1 Data Layer for Unstructured Financial Big Data

Automated pipeline for data-driven financial reinforcement learning: We follow the DataOps
paradigm [16, 6, 63] in the data layer. As shown in Fig. 3, we establish a standard pipeline for financial
data engineering, which processes data from different sources into a unified market environment
following the de facto standard of OpenAI gym [8]. We automate this pipeline with a data processor
that implements the following functionalities:

• Data accessing: Users can connect data APIs of different market platforms via our common
interfaces. Users can access data agilely by specifying the start date, end date, stock list, time
interval, and other parameters. FinRL-Meta has supported more than 30 data sources, covering
stocks, cryptocurrencies, ETFs, forex, etc.

• Data cleaning: Raw data retrieved from different data sources are usually of various formats and
with erroneous or missing data to different extents. It makes data cleaning highly time-consuming.
With a data processor, we automate the data cleaning process. In addition, we use stock ticker name
and data frequency as unique identifiers to merge all types of data into one unified data table.

• Feature engineering: In feature engineering, FinRL-Meta aggregates effective features which
can help improve model predictive performance. We provide various types of features, including
but not limited to fundamental, market, analytics, and alternative features. Users can quickly add
features using open-source libraries or add user-defined features. Users can add new features in
two ways: 1) Write a user-defined feature extraction function directly. The returned features are
added to a feature array. 2) Store the features in a file, and put it in a default folder. Then, an agent
can read these features from the file.

Automated feature engineering: FinRL-Meta currently supports four types of features:

• Fundamental features: Fundamental features are processed based on the earnings data in SEC
filings queried from WRDS. The data frequency is low, typical quarterly, e.g., four data points in a
year. To avoid information leakage, we use a two-month lag beyond the standard quarter end date,
e.g., Apple released its earnings report on 2022/07/28 for the third quarter (2022/06/25) of year
2022. Thus for the quarter between 04/01 and 06/30, our trade date is adjusted to 09/01 (same
method for other three quarters). We also provide functions in our data processor for calculating
financial ratios based on earnings data such as earnings per share (EPS), return on asset (ROA),
price to earnings (P/E) ratio, net profit margin, quick ratio, etc.

• Market features: Open-high-low-close price and volume data are the typical market data we can
directly get from querying the data API. They have various data frequencies, such as daily prices
from YahooFinance, TAQ (Millisecond Trade and Quote) from WRDS. In addition, we automate
the calculation of technical indicators based on OHLCV data by connecting the Stockstats4 or
TA-lib library5 in our data processor, such as Moving Average Convergence Divergence (MACD),
Average Directional Index (ADX), Commodity Channel Index (CCI), etc.

• Analytics features: We provide news sentiment for analytics features. First, we get the news
headline and content from WRDS [29]. Next, we use NLTK.Vader6 to calculate sentiment based
on the sentiment compound score of a span of text by normalizing the emotion intensity (positive,
negative, neutral) of each word. For the time alignment with market data, we use the exact enter
time, i.e., when the news enters the database and becomes available, to match the trade time. For
example, if the trade time is every ten minutes, we collect the previous ten minutes’ news based on
the enter time; if no news is detected, then we fill the sentiment with 0.

• Alternative features: Alternative features are useful, but hard-to-obtain from different data sources
[13], such as ESG data, social media data, Google trend searches, etc. ESG (Environmental,
social, governance) data are widely used to measure the sustainability and societal impacts of an
investment. The ESG data we provide is from the Microsoft Academic Graph database, which
is an open resource database with records of scholar publications. We have functions in our data
processor to extract AI publication and patent data, such as paper citations, publication counts,
patent counts, etc. We believe these features reflect companies’ research and development capacity
for AI technologies [17, 11]. It is a good reflection of ESG research commitment.

4Github repo: https://github.com/jealous/stockstats
5Github repo: https://github.com/mrjbq7/ta-lib
6Github repo: https://github.com/nltk/nltk

6

https://github.com/jealous/stockstats
https://github.com/mrjbq7/ta-lib
https://github.com/nltk/nltk


4.2 Environment Layer for Creating Dynamic Market Environments

FinRL-Meta follows the OpenAI gym-style [8] to create market environments using the cleaned data
from the data layer. It provides hundreds of environments with a common interface. Users can build
their environments using FinRL-Meta’s interfaces, share their results and compare a strategy’s trading
performance. Following the gym-style [8], each environment has three functions as follows:

• reset() function resets the environment back to the initial state s0

• step() function takes an action at from the agent and updates state from st to st+1.

• reward() function computes the reward value transforming from st to st+1 by action at.

Detailed descriptions can be found in [67][20].

We plan to add more environments for users’ convenience. For example, we are actively building
market simulators using Limit-order-book data 7, where we simulate the market from the playback of
historical limit-order-book-level data and an order matching mechanism. We foresee the flexibility
and potential of using a Hidden Markov Model (HMM) [45] or a generative adversarial net (GAN)
[19] to generate market scenarios [12].

Incorporating trading constraints to model market frictions: To better simulate real-world
markets, we incorporate common market frictions (e.g., transaction costs and investor risk aversion)
and portfolio restrictions (e.g., non-negative balance).

• Flexible account settings: Users can choose whether to allow buying on margin or short-selling.

• Transaction cost: We incorporate the transaction cost to reflect market friction, e.g., 0.1% of each
buy or sell trade.

• Risk-control for market crash: In FinRL [38, 39], a turbulence index [28] is used to control risk
during market crash situations. However, calculating the turbulence index is time-consuming. It
may take minutes, which is not suitable for paper trading and live trading. We replace the financial
turbulence index with the volatility index (VIX) [65] that can be accessed immediately.

Multiprocessing training via vector environment: We utilize GPUs for multiprocessing training,
namely, the vector environment technique of Isaac Gym [43], which significantly accelerates the
training process. In each CUDA core, a trading agent interacts with a market environment to produce
transitions in the form of {state, action, reward, next state}. Then, all the transitions are stored in a
replay buffer and later used to update a learner. By adopting this technique, we successfully achieve
the multiprocessing simulation of hundreds of market environments to improve the performance of
DRL trading agents on large datasets.

4.3 Advantages

Our DataOps pipeline is automatic, which gives us the following three advantages.

Curriculum for newcomers: We provide an educational curriculum, as shown in Fig. 4, for
community newcomers with different levels of proficiency and learning goals. Users can grow
programming skills by gradually changing the data/environment layer following instructions on our
website.

Benchmarks on cloud: We provide demos on a cloud platform, Weights & Biases 8, to demonstrate
the training process. We define the hyperparameter sweep, training function, and initialize an agent to
train and tune hyperparameters. On the cloud platform Weights & Biases, users are able to visualize
their results and assess the relative performance via community-wise competitions.

Curriculum learning for agents: Based on FinRL-Meta (a universe of market environments, say
� 100), one is able to construct an environment by sampling data samples from multiple market
datasets, similar to XLand [60]. In this way, one can apply the curriculum learning method [60] to
train a generally capable agent for several financial tasks.

7Github repo: https://github.com/AI4Finance-Foundation/Market_Simulator
8Website: https://wandb.ai/site

7

https://github.com/AI4Finance-Foundation/Market_Simulator
https://wandb.ai/site


��������	
 ��	
��
��

�������	
����
������������������	
�	 �������
�	�
��
���
�
	�
�������������� ��	�
���	�
�

������ 
!"
���#���
�	�������$��%&

���������	� �'"	
���
�����������
"����
�����(�!


������#���!$����	
����
������ �������� �������
�	�
��
���
�
	�
��#)"�
��
$���(��

�������	
����
���������
!��	
�

������*'"��"
�
!�	���������+"	��
������*'"��"
�
!�	��������� �
'	��������$������,���-	��
���%�
���'��	
$��%
�������&

������ -��
����-
����
���	

#��

��.
���

��
�	��
�

+"	�!�/
	�
�

Figure 4: Demos of FinRL-Meta, organized in a curriculum structure.

5 Tutorials and Benchmarks of Financial Reinforcement Learning

We provide tens of tutorial notebooks to serve as stepping stones for newcomers and reproduce
popular papers as benchmarks for follow-up research.

5.1 Metrics and Baselines for Evaluating Performance

We provide the following metrics to measure the trading performance:

• Cumulative return R = v�v0
v0

, where v is the final portfolio value, and v0 is the original capital.

• Annualized return r = (1 +R)
365
t � 1, where t is the number of trading days.

• Annualized volatility �a =
qPn

i=1 (ri�r̄)2

n�1 , where ri is the annualized return in year i, r̄ is the
average annualized return, and n is the number of years.

• Sharpe ratio [55] ST = mean(Rt)�rf
std(Rt)

, where Rt = vt�vt�1

vt�1
, rf is the risk-free rate, and t =

1, ..., T .

• Max. drawdown: The maximal percentage loss in portfolio value.

The following baseline trading strategies are provided for comparisons:

• Passive trading strategy [44] is a well-known long-term strategy. The investors just buy and hold
selected stocks or indexes without further activities.

• Mean-variance and min-variance strategy [4] are two widely used strategies that look for a
balance between risks and profits. They select a diversified portfolio in order to achieve higher
profits at a lower risk.

• Equally weighted strategy is a portfolio allocation strategy that gives equal weights to different
assets, avoiding allocating overly high weights on particular stocks.

8



Figure 5: Reproducing stock trading (left) of [37].

5.2 Tutorials and Demos in Jupyter Notebooks

For educational purposes, we provide Jupyter notebooks as tutorials9 to help newcomers get familiar
with the whole pipeline.

• Stock trading [37]: We apply popular DRL algorithms to trade multiple stocks.
• Portfolio allocation [38]: We use DRL agents to optimize asset allocation in a set of stocks.
• Cryptocurrency trading [38]: We reproduce the experiment [38] on 10 popular cryptocurrencies.
• Multi-agent RL for liquidation strategy analysis [7]: We reproduce the experiment in [7]. The

multi-agent optimizes the shortfalls in the liquidation task, which is to sell given shares of one
stock sequentially within a given period, considering the costs arising from the market impact and
the risk aversion.

• Ensemble strategy for stock trading [67]: We reproduce the experiment in [67] that employed an
ensemble strategy of several DRL algorithms on the stock trading task.

• Paper trading demo: We provide a demo for paper trading. Users could combine their own
strategies or trained agents in paper trading.

• China A-share demo: We provide a demo based on the China A-share market data.
• Hyperparameter tuning: We provide several demos for hyperparameter tuning using Optuna [1]

or Ray Tune [32], since hyperparameter tuning is critical for better performance.

5.3 Reproducing Prior Papers as Benchmarks

We have reproduced experiments in several papers as benchmarks. Users can study our codes for
research purpose or use them as stepping stones for deploying trading strategies in live markets. In
this subsection, we introduce three home-grown examples specifically. For more benchmarks, please
refer to Appendix. C.

Stock trading task [37]: We access Yahoo! Finance database and select the 30 constituent stocks
(accessed at 07/01/2020) in Dow Jones Industrial Average (DJIA). We use data from 01/01/2009
to 06/30/2020 for training and data from 07/01/2020 to 05/31/2022 for testing. We use technical
indicators in our state space, e.g., Moving Average Convergence Divergence (MACD), Relative
Strength Index (RSI), Commodity Channel Index (CCI), Average Directional Index (ADX), etc.

As shown in Fig. 5 (left), we train five popular DRL algorithms to trade and compare their results
with the DJIA index. We show a detailed walkthrough of how DRL works in the stock trading task,
on which many subsequent works are based [37]. This benchmark is beneficial for getting into the
field of RL in finance.

Podracer on the cloud [30, 35]: We reproduce cloud solutions of population-based training, e.g.,
generational evolution [30] and tournament-based evolution [35]. If GPUs are abundant, users can
take advantage of this benchmark to meet the real-time requirement of high-frequency trading tasks.
Detailed instructions are provided on our website.

9https://github.com/AI4Finance-Foundation/FinRL-Tutorials

9



Figure 6: Reproducing the ensemble strategy of [67]: cumulative return.

(2020/07/01-2022/03/31) Ensemble [67] A2C PPO DDPG DJIA index
Annual Return 25.9% 23.3% 13.1% 12.7% 19.7%

Annual Volatility 15.9% 16.2% 13.4% 15.0% 14.4%
Sharpe Ratio 1.53 1.37 0.99 0.88 1.32
Calmar Ratio 2.27 1.97 0.88 0.85 1.74

Max Drawdown -11.4% -11.8% -14.9% -14.9% -11.3%

Table 2: Reproducing the ensemble strategy of [67].

Ensemble strategy [67]: The ensemble method combines different agents to obtain an adaptive one,
which inherits the best features of the agents and performs remarkably well in practice. We consider
three component algorithms, Proximal Policy Optimization (PPO), Advantage Actor-Critic (A2C),
and Deep Deterministic Policy Gradient (DDPG), which have different strengths and weaknesses.
For instance, A2C is good at dealing with a bearish trend market. PPO is good at following trends
and acts well in generating more returns in a bullish market. DDPG can be used as a complementary
strategy to PPO in a bullish trend. Using a rolling window, an ensemble agent automatically selects
the best model for each test period. Again on the 30 constituent stocks of the DJIA index, we use data
from 04/01/2009 to 06/30/2019 for training, and data from 07/01/2020 to 03/31/2022 for validation
and testing through a quarterly rolling window.

From Fig. 6 and Table 2, we observe that the ensemble agent outperforms other agents. In the
experiment, the ensemble agent has the highest Sharpe ratio of 1.53, which means it performs the
best in balancing risks and profits. This benchmark demonstrates that the ensemble strategy is
effective in constructing a more reliable agent based on several component DRL agents.

6 Conclusion

In this paper, we obeyed the DataOps paradigm and developed a FinRL-Meta library that provides
openly accessible dynamic financial datasets and reproducible benchmarks. For future work, FinRL-
Meta aims to build a universe of financial market environments, like the XLand environment [60]. To
improve the performance for the large-scale markets, we are exploiting GPU-based massive parallel
simulation such as Isaac Gym [43]. Moreover, it will be interesting to explore the evolutionary
perspectives [22, 53, 30, 35] to simulate the markets. We believe that FinRL-Meta will provide
insights into complex market phenomena and offer guidance for financial regulations.

Acknowledgement

We thank Mr. Tao Liu (IDEA Research, International Digital Economy Academy) for technical
support of computing platform on this research project. Ming Zhu was supported by National Natural
Science Foundations of China (Grant No. 61902387). Christina Dan Wang is supported in part
by National Natural Science Foundation of China (NNSFC) grant 11901395 and Shanghai Pujiang
Program, China 19PJ1408200.

10



References
[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:

A next-generation hyperparameter optimization framework. ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2019.

[2] Sridhar Alla and Suman Kalyan Adari. What is MLOps? In Beginning MLOps with MLFlow,
pages 79–124. Springer, 2021.

[3] Selim Amrouni, Aymeric Moulin, Jared Vann, Svitlana Vyetrenko, Tucker Balch, and Manuela
Veloso. ABIDES-Gym: Gym environments for multi-agent discrete event simulation and
application to financial markets. ACM International Conference on AI in Finance (ICAIF),
2021.

[4] Andrew Ang. Mean-variance investing. Columbia Business School Research Paper No. 12/49,
2012.

[5] Leo Ardon, Nelson Vadori, Thomas Spooner, Mengda Xu, Jared Vann, and Sumitra Ganesh.
Towards a fully RL-based market simulator. ACM International Conference on AI in Finance
(ICAIF), 2021.

[6] Harvinder Atwal. Practical DataOps: Delivering agile data science at scale. Springer, 2019.

[7] Wenhang Bao and Xiao-Yang Liu. Multi-agent deep reinforcement learning for liquidation
strategy analysis. ICML Workshop on Applications and Infrastructure for Multi-Agent Learning,
2019.

[8] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. OpenAI Gym. arXiv preprint arXiv:1606.01540, 2016.

[9] Stephen J Brown, William Goetzmann, Roger G Ibbotson, and Stephen A Ross. Survivorship
bias in performance studies. The Review of Financial Studies, 5(4):553–580, 1992.

[10] David Byrd and Antigoni Polychroniadou. Differentially private secure multi-party computation
for federated learning in financial applications. In Proceedings of the First ACM International
Conference on AI in Finance, pages 1–9, 2020.

[11] Qian Chen and Xiao-Yang Liu. Quantifying ESG alpha using scholar big data: an automated
machine learning approach. In Proceedings of the First ACM International Conference on AI in
Finance, pages 1–8, 2020.

[12] Andrea Coletta, Matteo Prata, Michele Conti, Emanuele Mercanti, Novella Bartolini, Aymeric
Moulin, Svitlana Vyetrenko, and Tucker Balch. Towards realistic market simulations: a
generative adversarial networks approach. ACM International Conference on AI in Finance
(ICAIF), 2021.

[13] Marcos Lopez De Prado. Advances in financial machine learning. John Wiley & Sons, 2018.

[14] Gabriel Dulac-Arnold, Nir Levine, Daniel J Mankowitz, Jerry Li, Cosmin Paduraru, Sven Gowal,
and Todd Hester. An empirical investigation of the challenges of real-world reinforcement
learning. ArXiv abs/2003.11881, 2020.

[15] Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforce-
ment learning. ICML Workshop on Reinforcement Learning for Real Life, 2019.

[16] Julian Ereth. DataOps: Towards a definition. LWDA, 2191:104–112, 2018.

[17] Yunzhe Fang, Xiao-Yang Liu, and Hongyang Yang. Practical machine learning approach to
capture the scholar data driven Alpha in AI industry. In IEEE International Conference on Big
Data (Big Data), pages 2230–2239. IEEE, 2019.

[18] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for
deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

11



[19] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in Neural
Information Processing Systems, 27, 2014.

[20] Berend Gort, Xiao-Yang Liu, Xinghang Sun, Jiechao Gao, Shuaiyu Chen, and Christina Dan
Wang. Deep reinforcement learning for cryptocurrency trading: Practical approach to address
backtest overfitting. ACM International Conference on AI in Finance, Workshop on Benchmarks
for AI in Finance, 2022.

[21] Mao Guan and Xiao-Yang Liu. Explainable deep reinforcement learning for portfolio man-
agement: An empirical approach. ACM International Conference on AI in Finance (ICAIF),
2021.

[22] Agrim Gupta, Silvio Savarese, Surya Ganguli, and Li Fei-Fei. Embodied intelligence via
learning and evolution. Nature Communications, 2021.

[23] Ben Hambly, Renyuan Xu, and Huining Yang. Recent advances in reinforcement learning in
finance. arXiv preprint arXiv:2112.04553, 2021.

[24] Daniel Hein, Stefan Depeweg, Michel Tokic, Steffen Udluft, Alexander Hentschel, Thomas A
Runkler, and Volkmar Sterzing. A benchmark environment motivated by industrial control
problems. In IEEE Symposium Series on Computational Intelligence (SSCI), pages 1–8. IEEE,
2017.

[25] Zhengyao Jiang and Jinjun Liang. Cryptocurrency portfolio management with deep reinforce-
ment learning. In Intelligent Systems Conference, 09 2017.

[26] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,
et al. Advances and open problems in federated learning. Foundations and Trends® in Machine
Learning, 14(1–2):1–210, 2021.

[27] Michaël Karpe, Jin Fang, Zhongyao Ma, and Chen Wang. Multi-agent reinforcement learning in
a realistic limit order book market simulation. ACM International Conference on AI in Finance,
2020.

[28] Mark Kritzman and Yuanzhen Li. Skulls, financial turbulence, and risk management. Financial
Analysts Journal, 66(5):30–41, 2010.

[29] Xinyi Li, Yinchuan Li, Hongyang Yang, Liuqing Yang, and Xiao-Yang Liu. DP-LSTM:
Differential privacy-inspired lstm for stock prediction using financial news. 33rd Conference on
Neural Information Processing Systems Workshop on Robust AI in Financial Services: Data,
Fairness, Explainability, Trustworthiness, and Privacy, December 2019, 12 2019.

[30] Zechu Li, Xiao-Yang Liu, Jiahao Zheng, Zhaoran Wang, Anwar Walid, and Jian Guo. FinRL-
Podracer: High performance and scalable deep reinforcement learning for quantitative finance.
ACM International Conference on AI in Finance (ICAIF), 2021.

[31] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph
Gonzalez, Michael Jordan, and Ion Stoica. RLlib: Abstractions for distributed reinforcement
learning. In Proceedings of the 35th International Conference on Machine Learning, volume 80,
pages 3053–3062. PMLR, 2018.

[32] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez, and Ion
Stoica. Tune: A research platform for distributed model selection and training. ICML AutoML
Workshop, 2018.

[33] Timothy Lillicrap, Jonathan Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. Inter-
national Conference on Learning Representations (ICLR) 2016, 09 2015.

[34] Xiao-Yang Liu, Zechu Li, Zhaoran Wang, and Jiahao Zheng. ElegantRL: A lightweight and sta-
ble deep reinforcement learning library. https://github.com/AI4Finance-Foundation/
ElegantRL, 2021.

12

https://github.com/AI4Finance-Foundation/ElegantRL
https://github.com/AI4Finance-Foundation/ElegantRL


[35] Xiao-Yang Liu, Zechu Li, Zhuoran Yang, Jiahao Zheng, Zhaoran Wang, Anwar Walid, Jian
Guo, and Michael Jordan. ElegantRL-Podracer: Scalable and elastic library for cloud-native
deep reinforcement learning. Deep Reinforcement Learning Workshop at NeurIPS, 2021.

[36] Xiao-Yang Liu, Jingyang Rui, Jiechao Gao, Liuqing Yang, Hongyang Yang, Zhaoran Wang,
Christina Dan Wang, and Guo Jian. FinRL-Meta: Data-driven deep reinforcementlearning in
quantitative finance. Data-Centric AI Workshop, NeurIPS, 2021.

[37] Xiao-Yang Liu, Zhuoran Xiong, Shan Zhong, Hongyang Yang, and Anwar Walid. Practical deep
reinforcement learning approach for stock trading. Workshop on Challenges and Opportunities
for AI in Financial Services, NeurIPS, 2018.

[38] Xiao-Yang Liu, Hongyang Yang, Qian Chen, Runjia Zhang, Liuqing Yang, Bowen Xiao, and
Christina Dan Wang. FinRL: A deep reinforcement learning library for automated stock trading
in quantitative finance. Deep RL Workshop, NeurIPS, 2020.

[39] Xiao-Yang Liu, Hongyang Yang, Jiechao Gao, and Christina Dan Wang. FinRL: Deep rein-
forcement learning framework to automate trading in quantitative finance. ACM International
Conference on AI in Finance (ICAIF), 2021.

[40] Yang Liu, Tao Fan, Tianjian Chen, Qian Xu, and Qiang Yang. Fate: An industrial grade
platform for collaborative learning with data protection. Journal of Machine Learning Research,
22(226):1–6, 2021.

[41] Yang Liu, Qi Liu, Hongke Zhao, Zhen Pan, and Chuanren Liu. Adaptive quantitative trading:
An imitative deep reinforcement learning approach. In Proceedings of the AAAI Conference on
Artificial Intelligence), volume 34, pages 2128–2135, 2020.

[42] Johann Lussange, Ivan Lazarevich, Sacha Bourgeois-Gironde, Stefano Palminteri, and Boris
Gutkin. Modelling stock markets by multi-agent reinforcement learning. Computational
Economics, 57(1):113–147, 2021.

[43] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles
Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel State. Isaac
Gym: High performance GPU-based physics simulation for robot learning. Datasets and
Benchmarks Track, NeurIPS, 2021.

[44] Burton G Malkiel. Passive investment strategies and efficient markets. European Financial
Management, 9(1):1–10, 2003.

[45] Rogemar S Mamon and Robert James Elliott. Hidden Markov models in finance, volume 4.
Springer, 2007.

[46] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei Rusu, Joel Veness, Marc Bellemare,
Alex Graves, Martin Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen, Charles
Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518:529–33, 02 2015.

[47] Giuseppe Nuti, Mahnoosh Mirghaemi, Philip Treleaven, and Chaiyakorn Yingsaeree. Algorith-
mic trading. Computer, 44:61–69, 2011.

[48] Tidor-Vlad Pricope. Deep reinforcement learning in quantitative algorithmic trading: A review.
arXiv preprint arXiv:2106.00123, 2021.

[49] Rongjun Qin, Songyi Gao, Xingyuan Zhang, Zhen Xu, Shengkai Huang, Zewen Li, Weinan
Zhang, and Yang Yu. NeoRL: A near real-world benchmark for offline reinforcement learning.
arXiv preprint arXiv:2102.00714, 2021.

[50] Marco Raberto, Silvano Cincotti, Sergio M Focardi, and Michele Marchesi. Agent-based
simulation of a financial market. Physica A: Statistical Mechanics and its Applications, 299(1-
2):319–327, 2001.

13



[51] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 2021.

[52] Francesco Rundo. Deep LSTM with reinforcement learning layer for financial trend prediction
in fx high frequency trading systems. Applied Sciences, 9(20):4460, 2019.

[53] Maarten P Scholl, Anisoara Calinescu, and J Doyne Farmer. How market ecology explains
market malfunction. Proceedings of the National Academy of Sciences, 118(26), 2021.

[54] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv:1707.06347, 07 2017.

[55] William F Sharpe. The Sharpe Ratio. Journal of Portfolio Management, 01 1994.

[56] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489,
2016.

[57] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of
Go without human knowledge. Nature, 550(7676):354–359, 2017.

[58] Richard S Sutton. The quest for a common model of the intelligent decision maker. arXiv
preprint arXiv:2202.13252, 2022.

[59] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[60] Open Ended Learning Team, Adam Stooke, Anuj Mahajan, Catarina Barros, Charlie Deck,
Jakob Bauer, Jakub Sygnowski, Maja Trebacz, Max Jaderberg, Michael Mathieu, et al. Open-
ended learning leads to generally capable agents. arXiv preprint arXiv:2107.12808, 2021.

[61] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based
control. In IEEE/RSJ international conference on intelligent robots and systems, pages 5026–
5033. IEEE, 2012.

[62] Philip Treleaven, Michal Galas, and Vidhi Lalchand. Algorithmic trading review. Communica-
tions of the ACM, 56:76–85, 2013.

[63] Crystal Valentine and William Merchan. DataOps: An agile methodology for data-driven
organizations. https://www.oracle.com/a/ocom/docs/oracle-ds-data-ops-map-r.

pdf, 2018.

[64] José R Vázquez-Canteli, Jérôme Kämpf, Gregor Henze, and Zoltan Nagy. CityLearn v1.0:
An OpenAI gym environment for demand response with deep reinforcement learning. ACM
International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation,
2019.

[65] Robert E Whaley. Understanding the VIX. The Journal of Portfolio Management, 35(3):98–105,
2009.

[66] Markus Wilkman et al. Feasibility of a reinforcement learning based stock trader. 2020.

[67] Hongyang Yang, Xiao-Yang Liu, Shan Zhong, and Anwar Walid. Deep reinforcement learning
for automated stock trading: An ensemble strategy. ACM International Conference on AI in
Finance, 2020.

[68] Zihao Zhang, Stefan Zohren, and Stephen Roberts. Deep reinforcement learning for trading.
The Journal of Financial Data Science, 2(2):25–40, 2020.

14

https://www.oracle.com/a/ocom/docs/oracle-ds-data-ops-map-r.pdf
https://www.oracle.com/a/ocom/docs/oracle-ds-data-ops-map-r.pdf


Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] More computational cost.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] May lead

to future works with higher computational cost.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [N/A]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

15


	Introduction
	Related Works
	Financial Reinforcement Learning and FinRL-Meta Framework
	Financial Reinforcement Learning and Challenges
	Overview of FinRL-Meta

	Financial Big Data and DataOps for Dynamic Datasets
	Data Layer for Unstructured Financial Big Data
	Environment Layer for Creating Dynamic Market Environments
	Advantages

	Tutorials and Benchmarks of Financial Reinforcement Learning
	Metrics and Baselines for Evaluating Performance
	Tutorials and Demos in Jupyter Notebooks
	Reproducing Prior Papers as Benchmarks

	Conclusion
	Terminology of Reinforcement Learning and Finance
	DataOps Paradigm for Financial Big Data
	FinRL: Financial Reinforcement Learning
	RLOps in Finance Paradigm
	Stock Trading
	Liquidation Analysis and Trade Execution
	Explainable Financial Reinforcement Learning
	Podracer on the Cloud
	Ensemble Strategy
	Market Simulator

	Dataset Documentation and Usages
	Motivation
	Composition
	Collection Process
	Preprocessing/cleaning/labeling
	Uses
	Distribution
	Maintenance

	Open Source FinRL-Meta and DAO, DeFi, NFT, Web3
	Data Privacy, Strategy Privacy and Federated Learning Technology
	Accessibility, Accountability, Maintenance and Rights

