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ABSTRACT

Deep reinforcement learning (DRL) has been envisioned to have a

competitive edge in quantitative finance. However, there is a steep

development curve for quantitative traders to obtain an agent that

automatically positions to win in the market, namely to decide where

to trade, at what price and what quantity, due to the error-prone

programming and arduous debugging. In this paper, we present

the first open-source framework FinRL as a full pipeline to help

quantitative traders overcome the steep learning curve. FinRL is

featured with simplicity, applicability and extensibility under the

key principles, full-stack framework, customization, reproducibility

and hands-on tutoring.

Embodied as a three-layer architecture with modular structures,

FinRL implements fine-tuned state-of-the-art DRL algorithms and

common reward functions, while alleviating the debugging work-

loads. Thus, we help users pipeline the strategy design at a high

turnover rate. At multiple levels of time granularity, FinRL simu-

lates various markets as training environments using historical data

and live trading APIs. Being highly extensible, FinRL reserves a set

of user-import interfaces and incorporates trading constraints such

as market friction, market liquidity and investor’s risk-aversion.

Moreover, serving as practitioners’ stepping stones, typical trad-

ing tasks are provided as step-by-step tutorials, e.g., stock trading,

portfolio allocation, cryptocurrency trading, etc.
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decision processes; Reinforcement learning.
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1 INTRODUCTION

Deep reinforcement learning (DRL), that balances exploration (of

uncharted territory) and exploitation (of current knowledge), is a

promising approach to automate trading in quantitative finance

[50][51][47][54][21][13]. DRL algorithms are powerful in solving

dynamic decision making problems by learning through interac-

tions with an unknown environment, and offer two major advan-

tages of portfolio scalability and market model independence [6].

In quantitative finance, algorithmic trading is essentially making

dynamic decisions, namely to decide where to trade, at what price

and what quantity, in a highly stochastic and complex financial

market. Incorporating many financial factors, as shown in Fig. 1,

a DRL trading agent builds a multi-factor model to trade automat-

ically, which is difficult for human traders to accomplish [4, 53].

Therefore, DRL has been envisioned to have a competitive edge in

quantitative finance.

Many existing works have applied DRL in quantitative finan-

cial tasks. Both researchers and industry practitioners are actively

designing trading strategies fueled by DRL, since deep neural net-

works are significantly powerful at estimating the expected return

of taking a certain action at a state. Moody and Saffell [33] utilized a

policy search for stock trading; Deng et al. [9] showed that DRL can

obtain more profits than conventional methods. More applications

include stock trading [35, 47, 51, 54], futures contracts [54], alter-

native data (news sentiments) [22, 35], high frequency trading [15],

liquidation strategy analysis [3], and hedging [6]. DRL is also being

actively explored in the cryptocurrency market, e.g., automated

trading, portfolio allocation, and market making.

However, designing a DRL trading strategy is not easy. The pro-

gramming is error-prone with tedious debugging. The development

pipeline includes preprocessing market data, building a training

environment, managing trading states, and backtesting trading per-

formance. These steps are standard for implementation but yet

time consuming especially for beginners. Therefore, there is an

urgent demand for an open-source library to help researchers and

quantitative traders to overcome the steep learning curve.

In this paper, we present a FinRL framework that automatically

streamlines the development of trading strategies, so as to help

researchers and quantitative traders to iterate their strategies at a

high turnover rate. Users specify the configurations, such as pick-

ing data APIs and DRL algorithms, and analyze the performance

of trading results. To achieve this, FinRL introduces a three-layer

framework. At the bottom is an environment layer that simulates

financial markets using actual historical data, such as closing price,

shares, trading volume, and technical indicators. In the middle is

the agent layer that implements fine-tuned DRL algorithms and

common reward functions. The agent interacts with the environ-

ment through properly defined reward functions on the state space

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3490354.3494366&domain=pdf&date_stamp=2022-05-04


New York ’21, Nov. 3–5, 2021, New York, NY Xiao-Yang Liu, Hongyang Yang, Jiechao Gao, and Christina Dan Wang

Figure 1: Overview of automated trading in FinRL, using deep

reinforcement learning.

and action space. The top layer includes applications in automated

trading, where we demonstrate several use cases, namely stock trad-

ing, portfolio allocation, cryptocurrency trading, etc. We provide

baseline trading strategies to alleviate debugging workloads.

Under the three-layer framework, FinRL is developed with three

primary principles:

• Full-stack framework. To provide a full-stack DRL framework

with finance-oriented optimizations, including market data APIs,

data preprocessing, DRL algorithms, and automated backtesting.

Users can transparently make use of such a development pipeline.

• Customization. To maintain modularity and extensibility in

development by including state-of-the-art DRL algorithms and

supporting design of new algorithms. The DRL algorithms can

be used to construct trading strategies by simple configurations.

• Reproducibility and hands-on tutoring. To provide tutorials

such as step-by-step Jupyter notebooks and user guide to help

users walk through the pipeline and reproduce the use cases.

This leads to a unified framework where developers are able to

efficiently explore ideas through high-level configurations and spec-

ifications, and to customize their own strategies at request.

Our contributions are summarized as follows:

• FinRL is the first open-source framework that demonstrates the

great potential of applying DRL algorithms in quantitative fi-

nance. We build an ecosystem around the FinRL framework,

which seeds the rapidly growing AI4Finance community.

• The application layer provides interfaces for users to customize

FinRL to their own trading tasks. Automated backtesting mod-

ule and performance metrics are provided to help quantitative

traders iterate trading strategies at a high turnover rate. Prof-

itable trading strategies are reproducible and hands-on tutorials

are provided in a beginner-friendly fashion. Adjusting the trained

models to the rapid changing markets is also possible.

• The agent layer provides state-of-the-art DRL algorithms that

are adapted to finance with fine-tuned hyperparameters. Users

can add new DRL algorithms.

• The environment layer includes not only a collection of histori-

cal data APIs, but also live trading APIs. They are reconfigured

into standard OpenAI gym-style environments [5]. Moreover, it

incorporates market frictions and allows users to customize the

trading time granularity.

The remainder of this paper is organized as follows. Section 2

reviews related works. Section 3 presents the FinRL framework.

Section 4 demonstrates benchmark trading tasks using FinRL. We

conclude this paper in Section 5.

2 RELATEDWORKS

We review the state-of-the-art DRL algorithms, relevant open-

source libraries, and applications of DRL in quantitative finance.

2.1 Deep Reinforcement Learning Algorithms

Many DRL algorithms have been developed. They fall into three

categories: value based, policy based, and actor-critic based.

A value based algorithm estimates a state-action value function

that guides the optimal policy. Q-learning [49] approximates a Q-

value (expected return) by iteratively updating a Q-table, which

works for problems with small discrete state spaces and action

spaces. Researchers proposed to utilize deep neural networks for

approximating Q-value functions, e.g., deep Q-network (DQN) and

its variants double DQN and dueling DQN [1].

A policy based algorithm directly updates the parameters of a

policy through policy gradient [45]. Instead of value estimation,

policy gradient uses a neural network to model the policy directly,

whose input is a state and output is a probability distribution ac-

cording to which the agent takes an action at the input state.

An actor-critic based algorithm combines the advantages of value

based and policy based algorithms. It updates two neural networks,

namely, an actor network updates the policy (probability distribu-

tion) while a critic network estimates the state-action value function.

During the training process, the actor network takes actions and the

critic network evaluates those actions. The state-of-art actor-critic

based algorithms are deep deterministic policy gradient (DDPG),

proximal policy optimization (PPO), asynchronous advantage actor

critic (A3C), advantage actor critic (A2C), soft actor-critic (SAC),

multi-agent DDPG, and twin-delayed DDPG (TD3) [1].

2.2 Deep Reinforcement Learning Libraries

We summarize relevant open-source DRL libraries as follows:

OpenAI Gym [5] provides standardized environments for vari-

ous DRL tasks. OpenAI baselines [10] implements common DRL

algorithms, while Stable Baselines 3 [37] improves [10] with code

cleanup and user-friendly examples.

Google Dopamine [7] aims for fast prototyping of DRL algorithms.

It features good plugability and reusability.

RLlib [25] provides highly scalable DRL algorithms. It has modular

framework and is well maintained.

TensorLayer [11] is designed for researchers to customize neural

networks for various applications. TensorLayer is a wrapper of

TensorFlow and supports the OpenAI gym-style environments.

However, it is not user-friendly.

2.3 Deep Reinforcement Learning in Finance

Many recent works have applied DRL to quantitative finance. Stock

trading is considered as the most challenging task due to its noisy

and volatile features, and various DRL based approaches [15, 35, 54]

have been applied. Volatility scaling was incorporated in DRL algo-

rithms to trade futures contracts, which consideredmarket volatility
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Figure 2: Overview of FinRL: application layer at the top, agent layer in the middle and environment layer at the bottom.

in a reward function. News headline sentiments and knowledge

graphs, as alternative data, can be combined with the price-volume

data as time series to train a DRL trading agent. High frequency

trading using DRL [38] is a hot topic.

Deep Hedging [6] designed hedging strategies with DRL algo-

rithms that manages the risk of liquid derivatives. It has shown two

advantages of DRL in mathematical finance, scalable andmodel-free.

DRL driven strategy would become more efficient as the scale of the

portfolio grows. It uses DRL to manage the risk of liquid derivatives,

which indicates further extension of our FinRL library into other

asset classes and topics in mathematical finance.

Cryptocurrencies are rising in the digital financial market, such

as Bitcoin (BTC) [40], and are considered more volatile than stocks.

DRL is also being actively explored in automated trading, portfolio

allocation, and market making for cryptocurrencies [20, 39, 41].

3 THE PROPOSED FINRL FRAMEWORK

In this section, we first present an overview of the FinRL framework

and describe its layers. Then, we propose a training-testing-trading

pipeline as a standard evaluation of the trading performance.

3.1 Overview of FinRL Framework

The FinRL framework has three layers, application layer, agent

layer, and environment layer, as shown in Fig. 2.

• On the application layer, FinRL aims to provide hundreds of

demonstrative trading tasks, serving as stepping stones for users

to develop their strategies.

• On the agent layer, FinRL supports fine-tuned DRL algorithms

from DRL libraries in a plug-and-play manner, following the

unified workflow in Fig. 1.

• On the environment layer, FinRL aims to wrap historical data

and live trading APIs of hundreds of markets into training envi-

ronments, following the defacto standard Gym [5].

Upper-layer trading tasks can directly call DRL algorithms in the

agent layer and market environments in the environment layer.

The FinRL framework has the following features:

• Layered architecture: The lower layer provides APIs for the

upper layer, ensuring transparency. The agent layer interacts with

the environment layer in an exploration-exploitation manner.

Updates in each layer is independent, as long as keeping the APIs

in Table 2 unchanged.

• Modularity and extensibility: Each layer has modules that

define self-contained functions. A user can select certain modules

to implement her trading task. We reserve interfaces for users to

develop new modules, e.g., adding new DRL algorithms.

• Simplicity and applicability: FinRL provides benchmark trad-

ing tasks that are reproducible for users, and also enables users

to customize trading tasks via simple configurations. In addition,

hands-on tutorials are provided in a beginner-friendly fashion.

3.2 Application Layer

On the application layer, users map an algorithmic trading strategy

into the DRL language by specifying the state space, action space

and reward function. For example, the state, action and reward

for several use cases are given in Table 1. Users can customize

according to their own trading strategies.

State spaceS. The state space describes how the agent perceives

the environment. A trading agent observes many features to make

sequential decisions in an interactive market environment. We

allow the time step 𝑡 to have multiple levels of granularity, e.g.,

daily, hourly or a minute basis. We provide various features for

users to select and update, in each time step 𝑡 :

• Balance 𝑏𝑡 ∈ R+: the account balance at the current time step 𝑡 .
• Shares 𝒌𝑡 ∈ Z𝑛+: current shares for each asset, where 𝑛 represents
the number of stocks in the portfolio.

• Open-high-low-close (OHLC) prices 𝒐𝑡 ,𝒉𝑡 , 𝒍𝑡 ,𝒑𝑡 ∈ R𝑛+ and trad-
ing volume 𝒗𝑡 ∈ R𝑛+.



New York ’21, Nov. 3–5, 2021, New York, NY Xiao-Yang Liu, Hongyang Yang, Jiechao Gao, and Christina Dan Wang

Key components Attributes

State

Balance 𝑏𝑡 ∈ R+; Shares 𝒌𝑡 ∈ Z𝑛+

OHLCV data 𝒐𝑡 ,𝒉𝑡 , 𝒍𝑡 , 𝒑𝑡 , 𝒗𝑡 ∈ R𝑛+

Technical indicators; Fundamental indicators

Smart beta

NLP market sentiment features

Action
Buy/Sell/Hold; Short/Long

Portfolio weights

Rewards

Change of portfolio value

Portfolio log-return

Shape ratio

Environment

Dow-30, NASDAQ-100, S&P-500

Cryptocurrencies

Foreign currency and exchange

Futures and options

Living trading

Table 1: Key components and attributes. OHLCV stands for

Open, High, Low, Close and Volume.

• Technical indicators, including Moving Average Convergence

Divergence (MACD), Relative Strength Index (RSI), etc.

• Fundamental indicators, including return on assets (ROA), return

on equity (ROE), net profit margin (NPM), price-to-earnings (PE)

ratio, price-to-book (PB) ratio, etc.

Action spaceA. The action space describes the allowed actions

that an agent can take at a state. An action of one share is 𝑎 ∈

{−1, 0, 1} where −1, 0, 1 represent selling, holding, and buying, re-
spectively; an action of multiple shares is 𝑎 ∈ {−𝑘, ...,−1, 0, 1, ..., 𝑘}
where 𝑘 denotes the maximum number of shares to buy or sell, e.g.,

"Buy/Sell 10 shares of AAPL" is 10 or −10, respectively.

Reward function. The reward function 𝑟 (𝑠, 𝑎, 𝑠 ′) is the incen-
tive for an agent to learn a better policy. FinRL supports user-defined

reward functions to reflect risk-aversion or market friction [6, 54]

and provides commonly used ones [13] as follows:

• The change of the portfolio value when taking action 𝑎 at state 𝑠
and arriving at new state 𝑠 ′ [35, 50, 51], 𝑟 (𝑠, 𝑎, 𝑠 ′) = 𝑣 ′ − 𝑣 , where
𝑣 ′ and 𝑣 are portfolio values at 𝑠 ′ and 𝑠 , respectively.

• The portfolio log return [18], 𝑟 (𝑠, 𝑎, 𝑠 ′) = log(𝑣 ′/𝑣).
• The Sharpe ratio for trading periods 𝑡 = 1, ...,𝑇 [34],

Sharpe ratio = (E (𝑅𝑡 ) − 𝑅𝑓 )/std(𝑅𝑡 ), (1)

where 𝑅𝑡 = 𝑣𝑡 − 𝑣𝑡−1, and 𝑅𝑓 is the risk-free rate.

3.3 Agent Layer

FinRL allows users to plug in and play with standard DRL algo-

rithms, following the unified workflow in Fig. 1. As a backbone, we

fine-tune three representative open-source DRL libraries, namely

Stable Baselines 3 [37], RLlib [25] and ElegantRL [28]. User can also

design new DRL algorithms by adapting existing ones.

3.3.1 Agent APIs. FinRL uses unified Python APIs for training a

trading agent. The Python APIs are flexible so that a DRL algo-

rithm can be easily plugged in. To train a DRL trading agent, as

in Fig. 2, a user chooses an environment (i,e., StockTradingEnv,

StockPortfolioEnv) built on historical data or live trading APIs with

default parameters (env_kwargs), and picks a DRL algorithm (e.g.,

Stability

Efficiency

Stable Baselines 3

RLlib ElegantRL

High

Low
Low High

/

Figure 3: Comparison of DRL libraries.

PPO [42]). Then, FinRL initializes the agent class with the envi-

ronment, sets a DRL algorithm with its default hyperparameters

(model_kwargs), then launches a training process and returns a

trained model.

The main APIs are given in Table 2, while the details of building

an environments, importing an algorithm, and constructing an

agents are hidden in the API calls.

3.3.2 Plug-and-Play DRL Libraries. Fig. 3 compares the three DRL

libraries. The details of each library are summarised as follows.

Stable Baselines 3 [37] is a set of improved implementations of

DRL algorithms over the OpenAI Baselines [10]. FinRL chooses to

support Stable Baselines 3 due to its advantages: 1). User-friendly,

2). Easy to replicate, refine, and identify new ideas, and 3). Good

documentation. Stable Baselines 3 is used as a base around which

new ideas can be added, and as a tool for comparing a new approach

against existing ones. The purpose is that the simplicity of these

tools will allow beginners to experiment with a more advanced tool

set, without being buried in implementation details.

RLlib [25] is an open-source high performance library for a

variety of general applications. FinRL chooses to support RLlib due

to its advantages: 1). High performance and parallel DRL training

framework; 2). Scale training onto large-scale distributed servers;

and 3). Allowing the multi-processing technique to efficiently train

on laptops. RLlib natively supports TensorFlow, TensorFlow Eager,

and PyTorch, but most of its internals are framework agnostic.

ElegantRL [28] is designed for researchers and practitioners

with finance-oriented optimizations. FinRL chooses to support El-

egantRL due to its advantages: 1). Lightweight: core codes have

less than 1,000 lines, less dependable packages, only using PyTorch

(train), OpenAI Gym [5] (env), NumPy, Matplotlib (plot); 2). Cus-

tomization: Due to the completeness and simplicity of the code

structure, users can easily customize their own agents; 3). Efficient:

Performance is comparable with RLlib [25]; and 4). Stable: As stable

as Stable Baselines 3 [37].

ElegantRL supports state-of-the-art DRL algorithms, including

both discrete and continuous ones, and provides user-friendly tuto-

rials in Jupyter Notebooks. ElegantRL implements DRL algorithms

under the Actor-Critic framework, where an agent consists of an

actor network and a critic network. The ElegantRL library enables

researchers and practitioners to pipeline the disruptive “design,

development and deployment” of DRL technology.

Customizing trading strategies. Due to the uniqueness of

different financial markets, customization becomes a vital character

to design trading strategies. Users are able to select a DRL algorithm

and easily customize it for their trading tasks by specifying the

state-action-reward tuple in Table 1. We believe that among the
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Function Description

env = StockTradingEnv(df, **env_kwargs) Return an environment instance of the Env class with data and default

parameters.

agent = DRLAgent(env) Instantiate a DRL agent with a given environment env.

model = agent.get_model(model_name, **model_kwargs) Return a model with name and default hyperparameters.

trained_model = agent.train_model(model) Launch the training process for the agent and return a trained model.

Table 2: Main APIs of FinRL.

three state-of-the-art DRL libraries, ElegentRL is a practically

useful option for financial tasks because of its completeness and

simplicity along with its comparable performance with RLlib [25]

and stability with Stable Baselines 3 [37].

3.4 Environment Layer

Environment design is crucial in DRL, because the agent learns

by interacting with the environment in a trial and error manner.

A good environment that simulates real-world market will help

the agent learn a better strategy. Considering the stochastic and

interactive nature, a financial task is modeled as a Markov Decision

Process (MDP), whose state transition is shown in Fig. 1.

The environment layer in FinRL is responsible for observing

current market information and translating those information into

states of the MDP problem. The state variables can be categorized

into the state of an agent and the state of the market. For example,

in the use case stock trading, the state of the market includes the

open-high-low-close prices and volume (OHLCV) and technical

indicators; the state of an agent includes the account balance and

the shares for each stock.

The RL training process involves observing price change, taking

an action and calculating a reward. By interacting with the envi-

ronment, the agent updates iteratively and eventually obtains a

trading strategy to maximize the expected return. We reconfigure

real market data into gym-style training environments according

to the principle of time-driven simulation. Inspired by OpenAI Gym

[5], FinRL provides strategy builders with a collection of universal

training environments for various trading tasks.

3.4.1 Standard Datasets and Live Trading APIs. DRL in finance is

different from chess, card games and robotics [44, 52], which may

have physical engines or simulators. Different financial tasks may

require different market simulators. Building such training environ-

ments is time-consuming, so FinRL provides a set of representative

ones and also supports user-import data, aiming to free users from

such tedious and time-consuming work.

NASDAQ-100 index constituents are 100 stocks that are charac-

terized by high technology and high growth.

Dow Jones Industrial Average (DJIA) index is made up of 30

representative constituent stocks. DJIA is the most cited market

indicator to examine market overall performance.

Standard & Poor’s 500 (S&P 500) index constituents consist of

500 largest U.S. publicly traded companies.

Hang Seng Index Index (HSI) constituents are grouped into

Finance, Utilities, Properties and Commerce & Industry [19]. HSI is

the most widely quoted indicator of the Hong Kong stock market.

SSE 50 Index constituents [12] include the best representative

companies (in 10 industries) of A shares listed at Shanghai Stock

Exchange (SSE) with considerable size and liquidity.

Figure 4: The training-testing-trading pipeline.

CSI 300 Index constituents [8] consist of the 300 largest and most

liquid A-share stocks listed on Shenzhen Stock Exchange and SSE.

This index reflects the performance of the China A-share market.

Bitcoin (BTC) Price Index consists of the quote and trade data

on Bitcoin market, available at https://public.bitmex.com/.
3.4.2 User-Imported Data. Users may want to train agents on their

own data sets. FinRL provides convenient support for users to

import data, adjust the time granularity, and perform the training-

testing-trading data split. We specify the format for different trading

tasks, and users preprocess and format the data according to our

instructions. Stock statistics and indicators can be calculated us-

ing our support, which provides more features for the state space.

Furthermore, episodic total return and Sharpe ratio can also assist

performance evaluation.

3.5 Training-Testing-Trading Pipeline

The "training-testing" workflow used by conventional machine

learning methods falls short for financial tasks. It splits the data

into training set and testing set. On the training data, users select

features and tune parameters; then evaluate on the testing data.

However, financial tasks will experience a simulation-to-reality gap

between the testing performance and real-live market performance.

Because the testing here is offline backtesting, while the users’ goal

is to place orders in a real-world market.

FinRL employs a “training-testing-trading" pipeline to reduce

the simulation-to-reality gap. We use historical data (time series)

for the “training-testing" part, which is the same as conventional

machine learning tasks, and this testing period is for backtesting

purpose. For the “trading" part, we use live trading APIs, such as

CCXT, Alpaca, or Interactive Broker, allowing users carry out trades

directly in a trading system. Therefore, FinRL directly connects

with live trading APIs: 1). downloads live data, 2). feeds data to the

trained DRL model and obtains the trading positions, and 3). allows

users to place trades.

Fig. 4 illustrates the “training-testing-trading” pipeline:

Step 1). A training window to retrain an agent.

Step 2). A testing window to evaluate the trained agent, while

hyperparameters can be tuned iteratively.

Step 3). Use the trained agent to trade in a trading window.

Rolling window is used in the training-testing-trading pipeline,

because the investors and portfolio managers need to retrain the
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model periodically as time goes ahead. FinRL provides flexible

selections of rolling windows, such as monthly, quarterly, yearly

windows, or by users’ specifications.

4 HANDS-ON TUTORIALS AND BENCHMARK
PERFORMANCE

We provide hands-on tutorials and reproduce existing works as use

cases. Their configurations and commands are available on Github.

4.1 Backtesting Module

Backtesting plays a key role in evaluating a trading strategy. FinRL

library provides an automated backtesting module based on Quan-

topian pyfolio package [36]. It is easy to use and consists of various

individual plots that provide a comprehensive image of the perfor-

mance. In order to facilitate users, FinRL also incorporates market

frictions, market liquidity and the investor’s degree of risk-aversion.
4.1.1 Incorporating Trading Constraints. Transaction costs incur

when executing a trade, such as broker commissions and the SEC

fee. We allow users to treat transaction costs as parameters in the

environments: 1). Flat fee is a fixed amount per trade; and 2). Per

share percentage is a percentage rate for every share, e.g., 0.1%
or 0.2% are most commonly used.

Moreover, we need to consider market liquidity for stock trading,

e.g., the bid-ask spread that is the difference between the best bid

and ask prices. In our environment, users can add the bid-ask spread

as a parameter. For different levels of risk-aversion, users can add

the standard deviation of the portfolio returns into the reward

function or use a risk-adjusted Sharpe ratio as the reward function.

4.1.2 Risk-aversion. An investor may prefer conservative trad-

ing in highly volatile markets. For a worst case scenario as the

2008 global financial crisis, FinRL employs the turbulence index

turbulence𝑡 to measure extreme fluctuation [23]:

turbulence𝑡 = (𝒚𝒕 − 𝝁)𝑇 𝚺−1 (𝒚𝒕 − 𝝁) ∈ R, (2)

where 𝒚𝒕 ∈ R𝑛 is the return at 𝑡 , 𝝁 ∈ R𝑛 is the average of histor-

ical returns, and 𝚺 ∈ R𝑛×𝑛 is the covariance matrix of historical

returns. turbulence𝑡 can be used to control buying/selling actions.

If turbulence𝑡 is higher than a preset threshold, the agent halts and

will resume when turbulence𝑡 becomes lower than the threshold.

4.2 Baseline Strategies and Trading Metrics

Baseline trading strategies are provided to compare with DRL strate-

gies. Investors usually have two mutually conflicting objectives:

the highest possible profits and the lowest possible risks [43]. We

include three conventional strategies as baselines.

Passive trading strategy [31] is an easy and popular strategy

that has the minimal trading activities. Investors simply buy and

hold index ETFs [46] to replicate a broad market index or indices

such as Dow Jones Industrial Average (DJIA) index and Standard &

Poor’s 500 (S&P 500) index.

Mean-variance and min-variance strategy [2] both aim to

achieve an optimal balance between the risks and profits. It selects

a diversified portfolio with risky assets, and the risk is diversified

when traded together.

Equally weighted strategy is a type of portfolio allocation

method. It gives the same importance to each asset in a portfolio.

FinRL includes commonmetrics to evaluate trading performance:

Final portfolio value: the amount of money at the end of the

trading period.

Cumulative return: subtracting the initial value from the final

portfolio value, then dividing by the initial value.

Annualized return and standard deviation: geometric average

return in a yearly sense, and the corresponding deviation.

Maximum drawdown ratio: the maximum observed loss from

a historical peak to a trough of a portfolio, before a new peak is

achieved. Maximum drawdown is an indicator of downside risk

over a time period.

Sharpe ratio in (1) is the average return earned in excess of the

risk-free rate per unit of volatility.

4.3 Hands-on Tutorials

We provide tutorials to help users walk through the strategy design

pipeline, i.e., get familiar with the stat-action-reward specifications

in Table 1 and the agent-environment interactions in Fig. 1.

Tutorial 1: Stock trading

First, users specify the state at the application layer, i.e., the num-

ber of stocks, technical indicators, the initial capital, etc. Second,

users provide start/end dates for training/testing periods, set the

time granularity. FinRL instantiates an environment for the task,

while the operations are transparent to users. FinRL uses standard

APIs to download data and obtains a Pandas DataFrame containing

the open-high-low-close prices and volume (OHLCV) data. FinRL

preprocesses the OHLCV data by filling missing data and calculates

technical indicators that are passed into the state. Third, users select

a DRL library and a DRL algorithm. FinRL has default hyperparam-

eters for daily stock trading task. During the testing period, users

can tune these parameters to improve the trading performance.

Finally, FinRL feeds time series data of the portfolio value into a

backtesting module to plot charts. Please see examples in Section

4.4 and Section 4.6.

Tutorial 2: Analyzing Trading Performance

Before deploying a trading strategy, users need to fully evaluate

its trading performance via backtesting. The trading performance

can be easily evaluated using the automatic backtesting module

in Section 4.1. The commonly used trading metrics and baseline

strategies are given in Section 4.2.

Cumulative return and Sharpe ratio are widely used metrics to

evaluate overall performance of trading strategies. To gain more

details about the strategy, the distribution of returns over the test-

ing period and annualized return are provided to examine if the

return is stable and consistent. Annualized volatility and maximum

drawdown measure the robustness.

4.4 Use Case I: Stock Trading

We use FinRL to reproduce both [50] and [51] for stock trading.

The ensemble strategy [51] combines three DRL algorithms (PPO

[42], A2C [32] and DDPG [26]) to improve the robustness.

The implementation is easy with FinRL. We choose three algo-

rithms (PPO, A2C, DDPG) in the agent layer, and an environment

with start and end dates in the environment layer. The implemen-

tations of DRL algorithms and data preprocessing are transparent

to users, alleviating the programming and debugging workloads.

Thus, FinRL greatly facilitates the strategy design, allowing users

to focus on improving the trading performance.
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Figure 5: Performance of stock trading [51] using the FinRL framework.

Figure 6: Performance of portfolio allocation [21] using the FinRL framework.

07/01/2020-06/30/2021 Ensemble [51] A2C PPO DDPG TD3 Min-Var. DJIA

Initial value 1M 1M 1M 1M 1M 1M 1M

Final value 1.52M 1.46M; 1.43M 1.42M; 1.36M 1.40M; 1.36M 1.39M 1.24M 1.33M

Annualized return 52.61% 46.65%; 42.57% 41.90%; 36.17% 40.34%; 36.01% 39.38% 24.10% 32.84%

Annualized Std 15.53% 17.86%; 15.51% 16.33%; 15.20% 17.28%; 14.38% 15.08% 11.2% 14.5%

Sharpe ratio 2.81 2.24; 2.36 2.23; 2.11 2.05; 2.21 2.28 1.98 2.02

Max drawdown -7.09% -7.59%; -9.04% -9.41%; -8.68% -8.10%; -8.46% -8.92% -6.97% -8.93%

Table 3: Performance of stock trading and portfolio allocation over the DJIA constituents stocks using FinRL. The Sharpe ratios

of the ensemble strategy and the individual DRL agents excceed those of the DJIA index, and of the min-variance strategy.

Fig. 5 and Table 3 show the backtesting performance on Dow

30 constituent stocks, accessed at 2020/07/01. The training period

is from 2009/01/01 to 2020/06/30 on a daily basis, and the testing

period is from 2020/07/01 to 2021/06/30. The performance in terms

ofmultiple metrics is consistent with the results reported in [51] and

[50], and here we show results in a recent trading period. We can

see from the DJIA index that the trading period is a bullish market

with an annual return of 32.84%. The ensemble strategy achieves
a Sharpe ratio of 2.81 and an annual return of 52.61%. It beats
A2C with a Sharpe ratio of 2.24, PPO with a Sharpe ratio of 2.23,
DDPG with a Sharpe ratio of 2.05, DJIA with a Sharpe ratio of 2.02,
and min-variance portfolio allocation with a Sharpe ratio of 1.98,
respectively. Therefore, the backtesting performance demonstrates

that FinRL successfully reproduces the ensemble strategy [51].



New York ’21, Nov. 3–5, 2021, New York, NY Xiao-Yang Liu, Hongyang Yang, Jiechao Gao, and Christina Dan Wang

Figure 7: Cumulative returns (5-minute interval) of trading top 10 market cap cryptocurrencies using FinRL.

4.5 Use Case II: Portfolio Allocation

We reproduce a portfolio allocation strategy [21] that uses a DRL

agent to allocate capital to a set of stocks and reallocate periodically.

FinRL improves the reproducibility by allowing users to easily

compare the results of different settings, such as the pool of stocks to

trade, the initial capital, and the model hyperparameters. It utilizes

the agent layer to specify the state-of-the-art DRL libraries. Users

do not need to redevelop the neural networks and instead they can

just plug-and-play with any DRL algorithm.

Fig. 6 and Table 3 depict the backtesting performance on Dow

30 constituent stocks. The training and testing period is the same

with Case I. It shows that each DRL agent, namely A2C [32], TD3

[14], PPO [42], and DDPG [26], outperforms the DJIA index and

the min-variance strategy. A2C has the best performance with a

Sharpe ratio of 2.36 and an annual return of 42.57%; TD3 is the
second best agent with a Sharpe ratio of 2.28 and an annual return
of 39.38%; PPO with a Sharpe ratio of 2.11 and an annual return of
36.17% and DDPG with a Sharpe ratio of 2.21 and an annual return
of 36.01%. Therefore, using FinRL, users can easily compare the

agents’ performance with each other and with the baselines.

4.6 Use Case III: Cryptocurrencies Trading

We use FinRL to reproduce [20] for top 10 market cap cryptocurren-

cies 1. FinRL provides a full-stack development pipeline, allowing

users to have an end-to-end walk-through of how to download

market data using APIs, perform data preprocessing, fine-tune DRL

algorithms, and get automated backtesting performance.

Fig. 7 shows the backtesting performance on the ten cryptocur-

rencies with transaction cost. The training period is from 2021/10/01

to 2021/10/20 with a 5-minute interval, and the testing period is

from 2021/10/21 to 2021/10/30. The portfolio with the PPO algo-

rithm from the ElegantRL library [28] has the highest cumulative

return of 103%, equally weighted portfolio strategy has the sec-

ond highest cumulative return of 99%, while BTC buy and hold

strategy has a cumulative return of 93%. Therefore, the backtesting

performance shows that FinRL successfully reproduce [20] with

completeness and simplicity.

1The top 10 market cap cryptocurrencies as of Oct 2021 are: Bitcoin (BTC), Ethereum
(ETH), Cardano (ADA), Binance Coin (BNB), Ripple (XRP), Solana (SOL), Polkadot
(DOT), Dogecoin (DOGE), Avalanche (AVAX), Uniswap (UNI).

5 ECOSYSTEM OF FINRL AND CONCLUSIONS

In this paper, we have developed an open-source framework, FinRL,

to help quantitative traders overcome the steep learning curve.

Customization is accessible on all layers, frommarket environments,

trading agents up towards trading tasks. FinRL follows a training-

testing-trading pipeline to reduce the simulation-to-reality gap.

Within FinRL, historical market data and live trading APIs are

reconfigured into standardized environments in OpenAI gym-style;

state-of-the-art DRL algorithms are implemented for users to train

trading agents in a pipeline; and an automated backtesting module

is provided to evaluate trading performance. Moreover, benchmark

schemes on typical trading tasks are provided as practitioners’

stepping stones.

Ecosystem of FinRL Framework. We believe that the open-

source community will greatly promote AI for finance in both

academia and industry. As the AI4Finance community is growing

rapidly, FinRL provides an open-source ecosystem that features

Deep Reinforcement Learning in finance for all-level users.

FinRL offers a full-stack framework that consists of various mar-

kets, SOTADRL algorithms, finance tasks (portfolio allocation, cryp-

tocurrency trading, high-frequency trading), live trading support,

etc. For entry-level users, FinRL aims to provide a demonstrative

and educational culture with hands-on documents to help beginners

get familiar with DRL in finance applications. For intermediate-level

users, such as full-stack developers and professionals, FinRL pro-

vides ElegantRL [28], a lightweight and scalable DRL library with

finance-oriented optimizations. For advanced-level users, such as

investment banks and hedge funds. FinRL delivers FinRL-Podracer

[24, 29], a cloud-native solution with high performance and high

scalability training.

FinRL also develops other useful tools to support the ecosystem.

FinRL-Meta [30] adds financial data engineering with a unified data

processor and hundreds of market environments. Explainable DRL

for portfolio management [17] and DRL ensemble strategy for stock

trading [50, 51] are also implemented using FinRL.

Future work. Future research directions would be investiaging

DRL’s potential on limit order book [48], hedging [6], market mak-

ing [16], liquidation [3], and trade execution [27].
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